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I. Introduction 

The advent of high speed digital computers has made a striking im- 

pact in aircraft flight control systems. In the flight control actu- 

ation systems alone, digital technology has brought about the possi- 

bility of quite a number of new design approaches [l]. For instance, 

the digital actuator is one of these new possibilities. Basically, a 

digital actuator is a device that can produce a desired quantized rate 

or a quantized position. The question that immediately arises is 

how often the on-board control computer must output digitized rate or 

position commands to the control actuators. If a fixed high output 

rate is selected, the control system analysis is greatly simplified 

enabling the designer to use the standard discrete control theory. On 

the other hand, a fixed high output rate increases the burden on the 

flight computer and the wear and tear of the associated mechanical 

equipment. Intuitively, a multirate output sampling is needed to im- 

prove the sampling efficiency. In a multirate sampled digital environ- 

ment, the control computer outputs per unit time can be optimized to 

achieve a desired system performance with the least number of output 

commands. 

The desire to achieve a high level ofsampling efficiency in sam- 

pled-data control systems has been a challenging goal in control engi- 

neering. Many different methods have been used to obtain efficient 

adaptive sampling laws in the last decade [2] - [lo]. In most of these 

methods, an integral difference criterion is used to make the difference 

of any two consecutive sampled errors equal. In general, these methods 

have been relatively simple formulations and yield implementable laws 



with low computational requirements. The major drawback in all of these 

approaches has been the lack of guarantee of stability in the resulting 

closed-loop system. One reason for this stability problem is that, in 

all these systems, the sampling interval is selected from a continuum 

of sampling intervals which makes the problem nonlinear. In this study, 

the sampling interval is selected from a finite number of sampling in- 

tervals. The use of a finite number of sampling intervals results in 

an analytically tractable formulation and also fits better to physical 

reality since the discretization of the continuum of sampling intervals 

is necessary in order to be implemented in a digital environment. 

The outline of the report is as follows: In the next section, a 

mathematical statement of the problem is given. Basic notions of sta- 

bility for time-varying systems is reviewed in Section III. In Section 

IV, it is shown that the stability problem as modelled in this study es- 

sentially reduces to one of finding a convergent sequence of matrices 

from a finite collection of matrices. The notions of convergent, con- 

tractive, andpre-contractive set of a finite number of matrices is intro- 

duced. It is shown that pre-contractiveness is a necessary and sufficient 

condition for finding a convergent sequence from a finite set of matrices. 

In Section V, computable criteria are found to test the contractiveness 

of a set of matrices. Section VI contains the conclusions and directions 

for further research. 



II. Statement of the Problem 

The objective of this investigation is to find mathematical con- 

ditions which will ensure stability in linear multirate-sampled-data 

control systems. Specifically, we take as given an m x m constant 

matrix A, and an m x n constant matrix B, and consider the system 

(1) l . l ' l x = Ax + Bu 

where x is an m-component "state vector" depending on time, and u is 

an n-component "control vector" depending on time. Given an initial 

state x 0 = x(O), we wish to construct a control u which will produce 

stability of the system at zero. (Various types of stability will be 

discussed in the next section.) 

All numbers, vectors, and matrices considered in this report are 

assumed real, Complex numbers enter only in the brief allusions to 

the spectral radius of a matrix in section 4. 

We must first discuss a solution of (1) satisfying an arbitrary 

cond2tion of the form x(t1) = z, where tl > 0 and z E R". The fol- 

lowing solution to this problem is standard. 

Consider the equation i = Ax. Any m x m matrix Q whose columns 

are linearly independent solutions of ir = Ax is called a fundamental 

matrix for the equation. 
tA 

One such matrix is Q(t) = e . Furthermore, 

if t 1 > 0 and z E Rm, a solution 4 of ir = Ax satisfying $(tl) = z is 

given by 
c+(t) = ectwtlJAZ 



Also, a solution 8 of the original equation (1) satisfying 0(tl) = 0 

is given by 
e(t) = &s)Bu(s)ds = e-SABu(s)ds . 

Now ($ + e)'(t) = A+(t) + A0(t) + Bu(t) = A(+ + e)(t) 

(4 + e](tl) = $(tl) + e(tl> = Z. Thus x = $ + 0 is = 

satisfyi‘ngxctl) = Z. 

+ Bu(t) and 

solution of (1) 

Now letting T = t-tl, we may write x(t) = c (t-tl>AZ + =tA 
/ 

te-s% u(s)ds = 
t1 

‘=- (s+tl%3u(s+tl)ds = eTAz + / -I- e(T-S)ABu(s+tl)ds. 
0 

Substituting v = T-s, we obtain 

(21 ’ ’ ’ ’ ’ x(T) = eTAz + 1 'F,Y$u(tl+T-v)dv . 
0 

We now think of constructing a "stable" solution of (1) by the 

method of sampling; that is, at particular instants in time we examine 

the value of x and, on the basis of that value, change the value of u 

SO as to make x stable. The value of u is to be held constant until 

0 
m the next sampling instant. Thus if tk 

is an increasing sequence 
k=l 

of sampling instants, Tk = tk+l - tk is the kth sampling interval, 

xk= x(tk) is the state at time tk, and uk is the constant value of 

u(t) for tk < t < tk+l, formula (2) can be rewritten as 

, or 

eVAdvBuk . 

A variable rate sampling problem is a problem of the above type 

in which a collection S = {Sl, S2, l * a, S M 1 of positive numbers 

4 



(sampling interval lengths) is given. The sequence tk of sampling 
i > 

instants is generated in time along with the sequence 
t\t 

of controls, 

in that each time a sample xk is observed, we are allowed to use its 

value in determining the next sampling interval, Tk, selected from the 

set S. 

The next control, ul, is to be determined in the following manner. 

Corresponding to each Si in S we determine an n x m matrix F 8' called 

the it' feedback matrix. Whenever the sampling interval Tk is selected 

to be the member S i of S, then uk is determined by uk = $xk. Further, 

we wish to allow the choice of T k to depend not only on the observed 

state xI, but also on the previous sampling interval Tk-1. 

Thus, given A, B, and S, we wish to define the feedback matrices 

I$13 $,P' ' ', 'I& and a "decision function" d(xl, Tk-1) whose value is 

a member of S which we will choose as T k' In this way, starting from 

any initial state x, and an arbitrary member T 
0 

of s, a sequence of 

state values is defined, using (3) by: 

Tk = d(\, Tkml) 
(4) . . . . . 

TX 
eVAdvBFT xk 1 k 

We want to choose the F i1s and the d in such a way that the resulting 

system is stable at 0. 

5 



III. Stability 

We restrict our attention to notions of stability for sequences 

of vectors in R" generated by some discrete system [ll]; that is, 

5+1 = P(x$ , x1 given. 

In general, P may involve any number of parameters such as, in our 

problem, Tk 1. The notions of stability require a norm on R". It 

is the case that all norms on R" are equivalent in the sense that, 

if 11 * 1 I1 and I I * I I2 are any two norms, there are numbers c1 > 0 

and S > 0 such that 

II L+t III s 4 x II2 and II x II2 s 41 x III 
for all x E km. As a result of this, it is immaterial which norm is 

used in the following definitions, and we denote a general norm by 

II * II. 
Several definitions for various types of stability have been 

defined, The ones given here essentially follow Ortega 1121. 

The discrete system P is convergent of x* if there is a 6 > 0 

such that 

lim Ilxk - 
k+m 

x*11 = 0 whenever 11x1 - x*lI < 6. 

P is globally convergent at x* if 

lim 1 \xk - x*1 1 = 0 for all xl E R". 
k+m 

P is Lyapunov stable at x* if, given E > 0, there is a 6-> 0 

such that ll~-“*lI <E for all k 2 1 whenever I Ix1 - x*1 I < 6. 

6 



Global convergence 'does not imply Lyapunov stability, for 

consider in R1, with x* * 0, 

%+a = P(k , x$ = i , k 2 1, xl arbitrary. 

Also, Lyapunov stability does not imp&y convergence, for consider in 

R1 with x* - 0, 

f 

2x,., k=l 

xk-f-1 - P(k '%) = \,k>l ' 

P is asymptotically stable at x* if P is both Lyapunov stable and 

convergent at x*. 

P is expontially convergent at x* if there is a P > 0, a positive 

B < 1, and a 6 > 0, such that 

1 Ixk - x*1] s 1'8~1 (xl - x*11 for all k 2 1, whenever 

11x1 - XXII < 8. 
Global asymptotic stability at x* is Lyapunov stability together 

* 
with global convergence at x , and global exponential convergence is 

defined by requfrfng 

11% - x*1.1 5 TB~IIx~ - x*11, all k 2 1 and all x. 

Clearly (global) exponential converge implies (global) asymptotic 

stability. 

7 



IV. Convergent, Contractive, and Pre-contractive Sets. 

In order to attack the problem as stated at the end of section 2, 

we proceed as follows. Assuming the m x m matrix A, the m x n matrix B, 

and the set S = 1' ‘2’ l l l 5 ‘N 
> 

of positive sampling interval lengths 

are given, set 

Ci = eSiA, and Di = 
J 

?zvAdvB . 
0 

If F% is to be the feedback matrix corresponding to Si, equations (4) 

at the end of section 2 can be written: 

T 
k 

= d$, Tkml) 

If suitable feedback matrices and a suitable decision function are to 

be found, then surely the collection 

Hi = Ci + DiFs , 
i 

has the property that, given any vector x E Rm, there is an order in 

which we can apply the Hi 's to x to produce a sequence convergent to, 

or at least remaining near, zero. We will find conditions which assume 

that a set of matrices has this property, in the hope that then the Bs. 
1 

can be found to produce these conditions. 

In our setting it will be clear that convergence, exponential con- 

verge, and asymptotic convergence are equivalent to the corresponding 

global types of stability. In the remainder of this report, the adjec- 

tive "global" will be dropped. Also, all types of stability will be 

8 



* 
considered at x = 0, so the phrase "at x*',' will be dropped. Through- 

out the report, theorems are numbered consecutively, regardless of the 

section in which they appear, as are definitions, lemmas, corollaries, 

and numbered formulas. 

Definftion 1: The set K = 
i' 

Hl, H2, l * ., HN 
> 

of m x m matrices 

is convergent provided that, 'if,x E Rm, there is a sequence 

with p(xji E (1, 2, * * a; Nl for all i, such that' 

fc%$ 

( ) 

i,;lcHP(XJi x *= O . 3r 

(The product is taken in reverse order so that Hp(xj , is applied first, 
1 

H 
PCXJ, 

second, and so on.) 

In the familiar case where N = 1, the only possible sequence is 

i I 

m 
Hlkx k=l l 

It is well-known that this sequence converges to zero for 

all X if and only if the spectral redius of Hl is less than 1, where 

the spectral radius is defined as the largest number which is the ab- 

solute value of an eigenvalue 

generalize in any foreseeable 

example in which N = 4: 

Example 1: 

+- --r r 

Hl= I,p ", 1, H2 = I'::: 

(real or complex). That this does not 

way to N > 1 is seen by the following 

In this example, each Hi has spectral radius 2, and yet the set 

K = J+ H2, . H3’ H4 
I 

is convergent. This can be seen by observing that: 

If II l II denotes the Euclidean norm, I IHlxl I s ~lIxj1 for all x s 0 



in Cl, where B = < 1 and Cl is the closed cone pictured 

here: 

48-3~~ To prove this, let CL = - 64 and consider the function 

f(t) = (1+t2) - (l/4 + 4t2) = 3/4 - 3t2. f(0) = 3/4, f(1/2) = 0, 

f decreases on IO, l/23, and f is even. Since 0 < 1r/8 < l/2, 

f(Ir/8) > 0. f(n/8) = 3/4 - 31~~/64 = CL. Assume ItI I IT/~. 

Then f(t) 2 f(;r/81 = a. Thus (l+t2) - (l/4 + 4t ) 2 2 a 

l- l/4 + 4g' 
1-tt‘ 2 + 

l/4 + 4t2 I 1 
1 + tL - f$ ' ' - &;64 = l - 

48-3~~ = B2 
64+1+ . 

(5) . l l $/3-5$ I 6 for ItI < i 

1+t 

Now suppose (x,y) E R2 and ,z I I 
I- "8 . 

10 



_- 
Since Cl = the statement is justified. 

Furthermore H2, H3, and H4 contract the lengths of vectors in C2, C3, 

and C4 in the same way, where C2 is the counterclockwise rotation of- 

Cl through 4S", C3 is the counterclockwise rotation of Cl through 90°, 

and C4 2s the counterclocMse rotation of Cl through 13S". 

Now ,$,Ci = R2. Thus, given x E R2, we select p(x)1 = j if 

k 
x E C. and, if pcd, i=1 

(4 > 

i 1 
have been dhtermined, we select p(xIk+l= j 

if. 1" Hp(X)i x E ‘j (If at some stage there are two possible choices 

for j, that is two cones overlap, we may choose either.) 

This example suggests the following definition. 

Definition 2: A set K = 
I 

'Hl, - - 0, HN 
3 

of m X m matrices is contractive 

relatfve tc the norm I I* I Iv provided that, if x E Rm and x # 0, there 

is an i E / 
L 

1, 2, -em, N 
1 

such that I ~H~xII, < I Ix[I,* 

It is a theorem that if K is contractive relative to some norm, 

then K is convergent. This will be contained in the more general 

11 



Theorem 1, to be proved presently. 

Clearly, contractiveness relative to a given norm is not a 

necessary condition for convergence of a set K of matrices. For 

example, 

K: Hl = E g, H2 = [ g is not contractive 

relative to the Euclidean norm, for neither matrix contracts 

x = Cl,11 . Yet the matrix HlH2 is zero, so that, if 

PGrJi= 1 
I 

2, i=l 
, i>l for all x, 

then all x go to zero in a hurry. In fact, it is clear that, if 

K = 
i 

Hl, l *., 
4 

and some finite product of the Hi's has spectral 

radius less than 1, then the sequence p(x) can be chosen to produce 

that product repeatedly, and thus K will be convergent. 

The authors have not proved that no finite product of the four 

matrices in Example 1 has spectral radius less than 1, but extensive 

experimentation suggests that this is the case. Yet the set K of 

Example 1 is convergent, and the algorithm for selecting p(x) does 

not deal with the spectral radii of products, but rather with the 

more near-sfghted contraction of the length of the vector. 

Consider another example with N = 2. 

Example 2: 

l/2 0 K:Hl= o 2 , 
[ 1 - 

Hl is identical with the Hl of Example 1, and H2 effects rotation 

clockwise through 30". Clearly K is convergent, for; given x E R2, 

3.2 



w= apply H2 often enough to bring the vector into the cone C 

described in Example 1, and then apply Hl. Since I IH2y I I = hYII 

for all y, we have now contracted the vector. If the result of Hl 

puts the vector outside of Cl, we again apply H2 often enough to 

bring it back to Cl, then apply Hl, and so on. This example, to- 

gether with the foregoing discussion, suggests the following defini- 

tion. 

Definition 3: A set K = 
{ 
Hl, ' * l , HN of m X m matrices is pre-con- 

> 
tractive relative to the norm 11. I Iv provided that, if x E Rm, x ti 0, 

there is a finite sequence q(x) i E 1,2,**.,N , such that 
> 

II( -fj- Hq(x) ) i xlly < llxk * 
i=n(x) 

We now show that pre-contractiveness relative to some norm is equiva- 

lent to convergence. In the following discussion, K = 
{ 

Hl, '*., H 
N > 

is a set of m x m matrices and (1.1 Iv is a norm on R". 

Lemma 1: If K is pre-contractive relative to II*\ Iv, there is a posi- 

tive integer M such that, if x E Rm, x f C, then there is a finite 

sequence q(x) i E 1,2,"',N , such that f 

IK 31 
-i-r 

i=n(x) 
Hq(x)i x ) /I '(t < 11x;1, 

and n(x) I M. . 

Proof: Let B = {x E R") l\xl\, = l}. 

B is compact in the norm topology.. For each positive integer n, let 



Sn is open relative to B and 3 S n=l n = B, s$nce K is pre-contractive 

relative to ]1.1~,. Thus there are positive integers nl, n2, l **, n 
R 

such that 

&S =B. 
i=l ni 

Let M = max nl, n2, l **, nR . 

Given 0 f x E Rm, there is an j, 1 I j I R such that -x-- E S 
IIxIIv nj* 

Then 

IN irHq e xIIv = IIxIlv Il(JfHq x 
( ,) 

X 

- II 
X 

Vi 
=n. v < 

J 
( 0 

llxlIv, i llxlIv i-n 
j 

I (xIIv l 1 = llxllv and nj < M . 

Lemma 2: If K is contractive relative to II. 

0 < $ < 1, such that, if x E Rm, x f 0, then 

'such that 11~~x1 Iv 5 BI 1x1 Iv . 

QED 

I Iv’ there is a 8, 

there is an i E 

Proof: Let B be defined as in Lemma 1. For each positive integer n, 

let 

Sn =(x E B jgi E {1,2,~~*,N)j IIHixllv < $) ' 

Each S is open relative to B, and 
n 

&Sn = B. Thus there are positive 

integers n 1, n2, l **, nL such that 

R 
iklsni = B. 

Let no e max 
1 > 

1 
nl,n2,*aw,nk , and let f3 = ?!(Ii- . 

nO 
Then 0 < S < 1, and, 

given x E Rm, x f 0, choose j so that 

14 



*en I lHj4 I, = I I4 Iv1 IH - ’ IiI,l j < fp IIXI I, 2 4 I4 I, 
QED. 

Theorem 1: K is convergent if and only if K is pre-contractive rela- 

tive to II.jj,. 

Proof: Assume K is convergent. Choose x E Rm, x f 0, and let p(x) 

be a sequence such that 

Iv < I IxIIv, and we may 

is pre-contractive choose q(x)i = p(x), for 1 5 i 5 n(x). Thus K 

relative to I 1. I Iv. 

Now assume K pre-contractive relative to I I l I Iv. Choose a 

positive integer M as given in Lemma 1. Then the set 

;=+H I 

1 i=k pi 
k I M, pi E 1,2,.*-,N 

is contractive relative to (/*[Iv. Choose 8, 0 < B < 1, for iz as 

given in Lemma 2. Thus we have: 

If x E Rm, 3 

_I I(+ 
i=n(x) 

H~(~)~)xI Iv 5 ~1 1x1 Iv and n(x) 5 M. 

Let II*] I, be the operator norm on m x m matrices generated by 11.1 1,; 

i.e. llHll, = sup((I~xll,~II~II, = 1). Then IIHYII~ s lI~ll~ll~II, for 

all y E Rm, and I IHiHjI IO s IIH,Ilol IHjlIo* 
Let B > ma 11~~1 lop I1J3,I lo, ...y 1 1 IHNl IO} 

15 



Fix an x E Rm. We must produce a 
x = '* 

If x = 0, any p(x) will do, so assume x * 0. 

Define y" = x and, for k > 0, 

Hq (Yk-l) 

. k-l 
' ' i 

unless y k-l = 0, in which case let yk = 0. Then 

I lYkl Iv s 4 lYk-ll Iv 5 B21 lYk-21 Iv 5 a” s gkl lyOl lv = Bkl 1x1 lv . 

For each positive integer k, let mk be the unique non-negative integer 

satisfying: 

mk-l 
n(yj) 

"k 
s(k) = L < k and t(k) = cn(yj) z k, 

j=O j=O 

(where we may take n(yJ> = 1 if yJ = 0). Then ml+1 2 mk for k 2 0, 

and lim 
k+Q3 Ys=". 

Let PCXI, = qt$J) k~s(k)' Given E> 0, choose a positive integer R 

so that Brna < 
ilxrl: l BIYI l 

Suppose k 2 R. Then k-s(k) 5 t(k) - s(k) = n(ymk) s M. Thus 

llxlIv = BrnkllXIlvBM < c 

x = 0 and K is convergent, 

QED, 

16 



We list three corollaries to this theorem. The first involves 

the concept of exponential convergence, which, in this setting, is 

defined as follows: - 
-. 

Definition 4: A set K= of m x m matrices is exponen- 

tially convergent provided that there is a norm I I l I I, on Rm, a 

J? > 0 and a B, 0 ( SX< 1, such that, if x E Rm, there is a sequence 

I.P(X) 
1 

I 1 Pi E 11,2,***,N( such that 

II(&p(T)i)xl Iv I TB~I\xII~ for each positive integer k. 

Corollary 1: If K is contractive relative to /(.I Iv, then K is expo- 

nentially convergent. 

Proof: Since K is contractive relative to 11.1 Iv, the M in the proof 

of Theorem 1 can be taken as 1. Thus each n(x) is 1 and it follows 

that mk = k-l for k > 0. Therefore the last inequality in the proof 

becomes: 

1 ‘(&p(xii) XI Iv 5 gkB1l 1x1 lv~M = reel (XI lv, where r = J$ . 

QED. 

Corollar ,y 2: If K is pre-contractive relative to (1.1 I,, then K is 

pre-contractive relative to any other norm II*) 1, on R". 

Proof: K pre-contractive relative to 11.1 Iv implies K is convergent, 

which implies that K is pre-contractive relative to 11.1 Iw. 
QED. 

Thus pre-contractiveness is norm-independent and we have: 

Definition 3: K is pre-contractive if there is a norm II*] Iv on R" 

such that K is pre-contractive relative to II*\ Iv. 

17 



Theorem 1 can now be restated: 

Theorem 1': K is convergent if and only if K is pre-contractfve. 

In the present setting, the notion of asymptotic stability is 

given by: 

Definition 5: K is asymptotically stable provided that there is a 

nOnn II-II, on R" such that, if E > 0, there is a 

if x E R" and IIxII, < 6 then there is a sequence 

that 

6 > 0 such that 

E 

for each positive integer k. 

Corollary 3: K is convergent if and only if K is astymptoti.cally 

stable. 

Proof: Clearly, asymptotic stability implies convergence. Assume, 

then, that K is convergent. Let ( \*[I, be a norm. K is pre-con- 

tractive relative to 11.1 Iv. Given c > 0, choose M, 6, and B as 

in the proof of Theorem 1. Let 6 = E 
BM ' 

and suppose x E R" with 

and k:l as in the proof and we 

have, for each positive integer k, 

II &P(,)~ xl(, -< Bmk,/xllvBM < B"S = <a 

Therefore K is asymptotically stable. QED. 



v. Criteria for Contractiveness --Positive Definite Sets of 
Matrices. 

We now seek criteria for contractiveness and prc-contractiveness 

of a finite set of m X m matrices. We have some information con- 

cerning contractiveness for which we must define the notion of a posi- 

tive definite set of matrices. Recall that a symmetric m x m matrix 

A is said to be positive definite provided xTAx > d for all non-zero 

x in Rm. .Equivalently, A ig positive definite provided that all the 

l igenvalues of A, which must be real because of the symmetry, are 

positive. 

Definition 6: A set W = Al,A2,*** of symmetric m X m matrices is 

a positive definite set provided that, if x E Rm, x f 0, then there i$ 

an i E 
{ 

1,2,*** ,N 
> 

such that fA,x > 0. 

We will show that a finite set of m x m matrices is contractive 

relative to a certain norm if and only if a certain related set of 

matrices is a positive definite set. 

Definition 7: If B is a symmetric m x m positive definite matrix and 

XER m, the B-norm of x is defined by 

It is well-known that 11 l I I, is a norm on R". Notice that B = I gives 

the Euclidean norm. 

Lemma 3: If H is an m x m matrix, B an m x m positive definite matrix, 

and A = B - HTBH, then IIxIlB2 - IIHxII~~ = xTAx for all x E Rm, and 

so < 11x1 lB} = {x E R" /xTAx > 0) . 

Proof: Let x E R". Then llxllB2 - (IHxII~~ = 

T x Bx - (Hx)~BHx = xT(B - HTBH)x = xTAx. 
QED. 

19 



Definition 8: If K = 1 
H1,H2, l * l ,J$q is a set of m x m matrices and 

B is a positive definite matrix, the B-symmetric set of K is the set 

B - HiTBHi 
I f 
l<isN 

of symmetric m X m matrices. 

In 1131, Stein proves: 

Theorem: If H is a real or complex square matrix, a necessary and suf- 

ficient condition that lim Hn 
n-)m 

= 0 is that there exist a positive 

definite Hermitian matrix B for which B - H*BH is positive definite. 

If H is real, B may be taken real and symmetric. 

Since contractiveness relative to some norm implies convergence, 

the following theorem contains a generalization of one direction of 

Stein's theorem. 

Theorem 2: If K = Hl,H2,.**,HN 
> 

and B is a positive definite matrix, 

then K is contractive relative to II* I IB if and only if the B-symme- 

tric set of K is a positive definite set. 

Proof: Let Ai = B - HiTBHi, so that W = 
{ 

Al,A2,.*., S> is the B-sym- 

metric set of K. The following statements are equivalent: 

K is contractive relative to B. 
m x~R,xfO, 
m 

XER,xfO, 

implies (pixj IB < (1x1 lB for some i. 

implies x Aix > 0 for some i. 

W is a positive definite set. 

QED. 

Theorem 2 together with Corollary 1 yields: 

Corollary 4: If K = 
1 H1J2,"',HN , 

1 
B is a positive definite matrix, 

and the B-symmetric set of'K is a positive definite set, then K is 

exponentially convergent. 

Thus we would like to know conditions related to positive definiteness 
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of a set of symmetric matrices. 

Recall the following theorem from matrix theory: 

Theorem: If A is a symmetric m x m matrix, there is a unique dia- 

gonal matrix D of the form D = diag 
1 

l,l,**,l,-l,-1,.-m,-l,O,O,..*,O 
> 

such that there is a non-singular matrix P with D = PTAP. The matrix 

D can be computed from by several standard techniques, one at which 

is to repeatedly apply similar row and column operations to A. The 

product of the corresponding elementary column matrices gives a 

matrix..P such that D = PTAP. 

Definition 9: In the preceding theorem, D will be called the canon- 

ical form of A, any non-singular matrix P satisfying D = PTAP will 

be called a canonizing matrix for A, the number of l's and -l's on 

the diagonal of D will be called the index and co-index of A, res- 

pectively. 

The positive definiteness of a set of matrices will be studied 

by considering images under linear transformations of certain fixed 

sets in R". We now define these sets. 

Definition 10: If 0 2 p, 0 I n, and p + n I m, then 

S(p,d 

Notice that 

tion by non-zero 

shown: 

0 4 S(p,d, and S(p,n) is closed under multiplica- 

scalars. Examples of some S(p,n) for m = 3 are 
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Theorem 3: If A is symmetric, P is a canonizing matrix for A, and 

p and n are the index and co-index, respectively, of A, then 

xTAx 2.0 = +Gs(p,nl). 

Proof: Let D be the canonical form of A, so that PTAP = D = 

diag 
{ 

l,**,l,-l;**,-l,O;**,O 
> 

with p l's and n -1's. Let x E R" 

and lety = P -1 x. Then the following statements are equivalent: 

xTAx > 0. 

~~(p-1)~Dp-l~ > 0. 

(P-'x)~D(P-'x) > 0. 

yTDy ' 0. 

fiyj2 - 5 yj2 > 0. 
j=l j=p+l 

Y E S(p,d. 

x E P(S(p,d). 
QED. 

Corollary 5: If W = 
{ 

Al,A2,- is a set of symmetric matrices, 

Pi is a canonizing matrix for Ai, pi and ni are the index and co-index 

of A., 1 
respectively, for 1 S i 2 N, then W is a positive definite set 

if and only if 

Proof: This follows immediately from Definition 6 and the theorem. 

It will be recalled that a matrix A is positive definite if and 

only if every principal submatrix of A is positive definite. This 

fact generalizes to positive definite sets as follows. 
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Definition 11: If 1 I t s m, Gt denotes the collection of all increas- 

ing t-termed sequences selected from 1,2,***,m . 
. 1 1 

If ci = gi i!l is 
1 I- 

in Gt and C is an m x m matrix, C[cl] denotes the principal t x t sub- 

matrix of C lying in the cl,02,. s l ,ct rows and c 1,Q2,"',cxt columns of 

C. That is, 

Clcrlij = c aisQj 
for 1 I i I t, 1 5 j 5 t. 

Theorem 4: Let W = 
1 

P4,A2r 
4 

be a set of symmetric m x m matrices. 

Then W is a positive definite set if and only if, for each t, 1 I t I m, 

and each cx E G t, Wcr = 
1 

Albl, A2bl, -**, %+I} is a positive definite 

set. 

Proof: Suppose W is a positive definite set. Let 1 5 t 5 m and c1 E G t' 

and let x E Rt, x f 0. Define y E R" by 

I "j if k = ct., j = 1,2;**,t 
Y k =(O if k t 

{ 
ct:,a2,***,ut 

1 
. 

There is an i E such that yTAiy > 0. But then 

xTAi[o]x = 
t 

pZ1 q=l i ; A [alpqxpxq = 

fl ala ~ Y Y = ~1 k~L(Ai)jkYjYk = 
P q cP cq 

yTAiy ' 0. Thus Wc is a positive definite set. 

The reverse implication is seen by choosing c1 E Gm, ci = i for 1 5 i 5 m, 

so that W = w. 0. QED. 

Finally, we relate positive definiteness of a set to the number 

of positive eigenvalues of the matrices in the set. 
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111 I I I I II 

Lemma 4: If Vl,V2,*** ,VN are subspaces of Rm, then 

dim A 
i=l'i 

1 - (N-1)m. 

Proof: Let di = dim Vi and do = dim . For 1 I i s N, there 

is an (m - di) x m matrix Ai such that Vi is the null space of Ai. 

Let A be the block matrix given by A1 
A2 A= . !I . . 

A is ( &(m-di)) X m; tha:is A is (N; - &di) X m. For x E Rm, 

Ax = 0 +3Aix = 0 for 1 s i 5 NHx s 
cl 
. V. 1 . Thus do is the nullity 

of A. Now Nm - Ed e rank of A = rnrio, so i=l i 

i. 2 &di + m - Nm . 

That is, dim (itVi) 2 (iicdim V.) - (N-Urn. 

QED. 

Theorem 5: If W = Al,A2,"', is a positive definite set of m x m 

symmetric matrices and pi = index of Ai for 1 5 i I N, then 

Proof: For 1 I i I N, let Pi be a canonizing matrix for A. and let ni 
1 

be the co-index of A.. 1 Since W is a positive definite set, Corollary5 

gives 

i!lPi( S cPlni)) = Rm - (0). 

Thus $lPi(, (pi,ni!)' = (Q}, where Qc denotes the complement of Q in R". 

24 



Now, for each i, S(pi,ni) c S(pi,O), so Pi 

and Pi (S(pi,O)) ' c Pi(S~(pi,ni))c . 

(6) . - - Thus i!:i(S(pi,O))c C i!:i(S(Pi,ni))C = 0 l 

But S(pi,O)' = yl = y2 = '*' = Y 
Pi 

= 0 is a subspace of 

R" of dimension m-pi. Since Pi is non-singular, 

Pi(S(pi,O)) ' = Pi(S(pi,O)') is a subspace of R" of dimension m-pi. 

Thus by (6) and Lemma 4 we have 

0 = dim (i~I'i(s(pi,O$c)~ 

(ich-pi)) - (N-l)m = m - $1~~ 9 or &pi 2 m 

QED. 

Corollary 6: If W = Al,A2,"* 
( 

is a positive definite set of 

symmetric m X m matrices, then the total number of positive roots 

of A 1> A29 -ma, %v counting multiplicities, is not less than m. 

Proof: This follows.from the theorem and the fact that the index of 

Ai is the number of positive eigenvalues of Ai, counting multiplicities. 

QED. 
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VI. Conclusions. 

In an attempt to secure sufficient conditions on the feedback 

matrices F 
S. 

and the decision function d that will ensure stability, 
1 

we have come only this far: 

If the Fs are selected so that the set 
2 

1lilN (see section 3) 
i 

has a positive definite 'Q-symmetric set for some positive definite 

matrix Q, then a decision function exists which will produce exponen- 

tial convergence (see Corollary 1). One such decision function would 

be constructed along the lines of the algorithm given in example 1, 

section 4. 

We have also shown that if the feedback matrices are selected 

so that the resulting set is convergent, then the resulting set pro- 

duces asymptotic stability, and so Lyapunov stability. For conver- 

gence implies that the set Ci + D.F 
{ 

1 si( 1 I i 5 b/ is pre-contractive 

(Theorem l'), which implies asymptotic stability (Corollary 3). 

Some of the questions which immediately suggest themselves are: 

(in the notation of the preceding sections) 

1. Under what conditions on A, B, and.S can the F be selected to 

achieve for some positive definite matrix Q, a positive definite 

Q-symmetric set, and how should the F be determined? 
'i 

2. Can we find more and better characterizations of positive definite 

sets of matrices than those given in section 5? It would seem 
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that there might be some conditions on the canonizing matrices 

Pi of section 5 which would produce positive definiteness, 

using Corollary 5. 

3. Can we find some useful conditions relating to pre-contractive- 

ness? If K is pre-contractive, then for some positive integer 

M, the set of all products of M or fewer members of K is con- 

tractive, so perhaps the material in section 5 will be useful 

here, too. 

4. Related to 3 is the problem of taking a pre-contractive set K 

and forming a contractive set with finite products of members 

of K. Such a process might lead to the development of decision 

functions producing stability. 

5. In the formation of a contractive set from a pre-contractive one, 

as mentioned in 4, we may want to minimize the number of matrices 

in the resulting contractive set. Alternatively, we may want to 

minimize the number of matrices from the pre-contractive set 

which are used in forming the contractive one. It would be use- 

ful to have conditions on contractive and pre-contractive sets 

which guarantee that they are "minimal"; that is, that if any 

matrix is removed from the set, the set no longer has the desired 

property. 

6. We have observed that if the set K = Ci + DiFs 1 i~l~f~N),s 

contractive, the construction of a decision function depending 

only on 3s is possible. In general, the decision function should 

depend only on xk and Tk-1. If K is pre-contractive, we know that 

any initial xl can be steered to zero, but we do not yet know 
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whether there necessarily exists a decision function depending only 

on xk and T k-l that can do it. If not, are there conditions on a 

pre-contractive K which guarantee the existence of the decision func- 

tion without implying contractiveness? 
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